

5 Lismard Court, Portlaoise, Co Laois Ph.: 057 8681155 E-mail: info@jrassc.ie www.jrassc.ie

PROJECT:	Proposed Portlaoise,	Residential Co Laois	Development	at	Railway	Street,
PROJECT NO:	17.168					
DOCUMENT TITLE:	Proposals f and Roads	or Foul and S	urface Water D	raina	ge, Water	Supply
DOCUMENT NO:	17.168. RPC)1				

Issue	Date	Description	Orig.	PE	PD	lssue Check
PL01	13.03.20	Issued for Planning	AW	AW	JR	BS

TABLE OF CONTENTS

1. INT	RODUCTION	3
1.1.	General	3
2. SUI	RFACE WATER DRAINAGE	3
2.1.	General	3
2.2.	Surface Water Network Design	4
2.3.	Attenuated Storm Drainage Network	4
2.4.	Water Quantity - General Principles of the Attenuation System 1	5
2.4	.1. Drainage Network 1- Attenuation Tank 1 (under carpark)	5
2.4	.2. Drainage Network 2- Attenuation Tank 2 (housing estate)	6
2.5.	Water Quality	7
2.6.	Flood Risk Consideration	7
3. FO	UL DRAINAGE	8
3.1.	General	8
3.2.	Proposed Foul Drainage Network	8
4. WA	ATER SUPPLY	8
4.1.	General	8
5. RO	AD DESIGN	9
5.1.	General	9
5.2.	DMURS Compliance	9
APPEND	אוא אוא איז איז איז איז איז איז איז איז איז אי	10
APPEND	DIX II	28
APPEND	ріх III	35

1. INTRODUCTION

1.1. General

Ardain Developments in co-operation with Laois Co.Co. intends to lodge a planning permission application to Laois County Council for a residential development & carpark at Railway Street, Portlaoise, Co. Laois.

The Site Layout Plan involves the provision for 67 residential units. It also includes 93 spaces carpark are to cater nearby train station. The design of services, access etc has been based on the Site Layout Plan for the site which is the current vision for developing the site.

The purpose of this report is to address the civil engineering design items associated with the above, and to provide relevant back-up and design details to compliment the engineering drawings as submitted as part of this application.

2. SURFACE WATER DRAINAGE

2.1. General

The surface water drainage for this proposed development has been designed in accordance with the principles as set out in Section 3 of the publication "Recommendations for Site Development Works for Housing Areas" published by the Department of the Environment and Local Government, 1998, and also in accordance with BS8301: 1985 – British Code of Practice for Building Drainage and the Laois County Council Storm Water Management Policy. The design takes account of the principles as set out in the Greater Dublin Strategic Drainage Study (GDSDS)

The site is currently a greenfield site and drains naturally to the Triogue River that is located along Northern boundary of the site. It is proposed to collect the storm water run-off from the road network within the proposed development in an underground surface water pipe network, the water collected within this network will be attenuated in 2 separate underground Stormtech Attenuation chambers. This Stormtech chambers have been designed in accordance Greater Dublin Strategic Drainage Study (GDSDS) prior to final discharge via. a stone wall to the nearby Triogue River. It is proposed to locate the Stormtech Attenuation systems as follows:

- in the public open space to the north of the site.
- in carpark spaces

2.2. Surface Water Network Design

In order to provide for a measure of groundwater recharge, and to comply with the requirements of Sustainable Urban Drainage Systems (SuDS), it is proposed that the rainwater falling onto the roofs of the residential dwellings will be directed towards individual soakaways provided to the rear gardens of each residential dwelling to allow for the dispersal of rainwater falling onto the roofs into the groundwater table under the site. This approach will also reduce the stormwater loading to the existing Triogue River as a significant hardstanding area within the proposed development will not be directed towards the stream and will allow for a measure of recharge of the groundwater table.

In addition, it is also proposed to provide permeable paving to the private parking spaces to further enhance the SUDs approach.

It is proposed that storm water collected from the impermeable surfaces that include the proposed access roads throughout the development, all rooftops and private parking spaces will be directed towards the underground gravity pipe networks which will discharge via the Stormtech Attenuation chambers to the Triogue River along the Northern boundary of the site.

2.3. Attenuated Storm Drainage Network

As described above, the system will flow through underground attenuation tanks to reduce the outflow to Greenfield levels prior to discharge to the Triogue River along the Northern Boundary of the site. Details of the above can be seen on drawings 17.168-210.

From this underground chamber, the surface water will flow through a HydroBrake flow control devices to reduce the run-off to a rate below the allowable discharge allowed under the the Greater Dublin Strategic Drainage Study (GDSDS). A Class 1 bypass petrol interceptor will be placed upstream of the attenuation chamber to remove any petrol or hydrocarbons from the run-off prior to discharge to the attenuation chamber.

The surface water drainage network was designed using the Modified Rational Method, based on the following variables:

i.	Return Period	=	100 Years
ii.	M5-60(mm)	=	15.8mm
iii.	Max Rainfall	=	50mm / hr
iv.	Ratio R	=	0.278
v.	Volumetric Run-off Co-efficient	=	0.75

The contributing areas were calculated, and the Micro-Drainage software package was used to design the size of the attenuation chamber, and the results of this design can be seen in Appendix II. In addition, the climate change factor of 10% was adopted.

As above the underground storm network will drain proposed access roads throughout the development, all rooftops and private parking spaces.

The drainage network results for the underground storm water network are included in Appendix II.

2.4. Water Quantity - General Principles of the Attenuation System 1

As described above, the storm water system collects the storm water run-off generated by the proposed access roads throughout the development, all rooftops and private parking spaces. It will be constructed as 2 independent systems. Outflow from both will be collected and discharged to the nearby Triogue River, having firstly passed through a Class 1 by-pass separators.

2.4.1. Drainage Network 1- Attenuation Tank 1 (under carpark)

i.	Site Area:	0.59 Ha
ii.	SAAR:	1060mm
iii.	Region	No 13
iv.	Soil Type	2
v.	SPR	0.3

With reference to Appendix I, The UKSuds.com Greenfield Runoff Tool was used to calculate the allowable runoff rates. Using the IH124 Methodology the greenfield runoff rates are calculated as follows:

Q_{BAR}= 1.74 l/s for a 1:100-year event

Therefore, the allowable outflow has been calculated below.

Calculations describing the Greenfield runoff and the proposed outflow from the developed site are outlined below, for design return periods of 1 in 100 Years.

The overall site area for the proposed development is given as 0.59 hectares. Applying the permissible outflow equation of 2.0l/s/ha, in accordance with Greater Dublin Strategic Drainage Study, yields the following.

Allowable Outflow = 3.4 l/s

 $Q_{BAR} = 1.74 I/s$

From inspection of the Micro Drainage Storage results included in Appendix II, the Maximum Allowable Outflow versus the Maximum Design Outflow are summarised below:

Return Period	Allowable (I/s)	Outflow	Design (I/s)	Outflow
100	3.4		3.3	

As can be seen above the design outflow is less than the maximum allowable outflow QBAR for the 1 in 100-year event. The maximum storage requirement occurs in the 360min Winter storm giving a maximum storage volume requirement of 109.6m3 in a 1:100-year event. With reference to the attached the storage volume provided is 110.4m3.

2.4.2. Drainage Network 2- Attenuation Tank 2 (housing estate)

i.	Site Area:	1.42 Ha
ii.	SAAR:	1060mm
iii.	Region	No 13
iv.	Soil Type	2
v.	SPR	0.3

With reference to Appendix I, The UKSuds.com Greenfield Runoff Tool was used to calculate the allowable runoff rates. Using the IH124 Methodology the greenfield runoff rates are calculated as follows:

Q_{BAR}= 4.21 l/s for a 1:100-year event

Therefore, the allowable outflow has been calculated below.

Calculations describing the Greenfield runoff and the proposed outflow from the developed site are outlined below, for design return periods of 1 in 100 Years.

The overall site area for the proposed development is given as 1.42 hectares. Applying the permissible outflow equation of 2.0l/s/ha, in accordance with Greater Dublin Strategic Drainage Study, yields the following.

Allowable Outflow =	8.21 l/s

 $Q_{BAR} = 4.21 l/s$

From inspection of the Micro Drainage Storage results included in Appendix II, the Maximum Allowable Outflow versus the Maximum Design Outflow are summarised below:

Return Period	Allowable (l/s)	Outflow	Design (I/s)	Outflow
100	8.21		8.0	

As can be seen above the design outflow is less than the maximum allowable outflow Q_{BAR} for the 1 in 100-year event. The maximum storage requirement occurs in the 360min Winter storm giving a maximum storage volume requirement of 255.5m3 in a 1:100-year event. With reference to the attached the storage volume provided is 255.7m3.

2.5. Water Quality

In order to ensure that the quality of the Stormwater runoff to the public system is uncontaminated, a Class 1 bypass petrol interceptors, will be placed upstream of the proposed attenuation systems to ensure that all hydrocarbons collected from the road run-off do not end up in the public system, and ultimately the local river network.

It should be noted that the Stormtech system will essentially act as a soakaway. However, to be conservative zero infiltration has been assumed in the attenuation design.

A downstream defender is also proposed prior to discharge to Triogue River.

2.6. Flood Risk Consideration

Based on OPW Flood Maps max water level in 1 at 1000y flood event in the Triogue River adjacent to the site will be +89.43m. Having this considered lowest building floor level was set at +90.0m

3. FOUL DRAINAGE

3.1. General

The main foul drainage for the proposed residential scheme has been designed in accordance with Irish Water standards and Codes of Practice.

The site is currently greenfield, but there is exisitng public foul drainage located to the north next to river.

The site is in a process of pre-connection enquiry application with Irish Water. It is proposed to collect the foul run-off from the proposed development in a new, separate underground foul network and direct towards the existing foul network in charge of Laois County Council.

3.2. Proposed Foul Drainage Network

It is proposed to lay a new foul gravity system to serve the entire development area. With reference to the attached Drainage plan each residential unit is served by a foul drain which then connects to a main foul drainage pipe work to be installed under the proposed access roadways. The main Foul Drainage pipe work varies in size throughout the development please refer to drawing 17.168-210.

The Foul Drainage within the scheme would remain in the control of the applicant until such time the development will be Taking in Charge.

4. WATER SUPPLY

4.1. General

The water supply for this proposed development has been designed in accordance with Irish Water requirements.

There is currently an existing watermain along the Church Street to the site east of the site. The proposed connection location is indicated on the attached Proposed Roads & Watermains layout 17.168-205.

It is proposed to form a connection to this watermain with a new MDPE watermain to serve the proposed development. It is proposed to lay the watermain within the footpaths where possible with and where it is not possible to construct the watermain in the footpath it will be laid under the access roads serving the proposed development. It is proposed to construct 100mm dia watermain throughout the development.

This connection will be fitted with an overall flow meter to monitor the water usage and losses for the entire development. A sluice valve combination will be fitted at the connection point and separately it is proposed to install a hydrant/scour valve combination at the lowest point on the line to allow for purging of the system.

Individual boundary boxes in accordance with Irish Water requirements will be provided on each private connection from the proposed watermain.

5. ROAD DESIGN

5.1. General

In terms of the internal road network, the design was prepared by the Architect and modified by JRA to comply with the Design Manual for Urban Roads and Streets (DMURS).

5.2. DMURS Compliance

With reference to the attached Roads and Public Lighting Layout drawings, 17.168-205, 206 & 600 you will note that the site is served by a main access road with 3 no. cul de sacs. The scheme design is such that the road will be overlooked by houses to the entire length of the access road. This will provide a sense of streetscape.

In terms of the horizontal alignment the access road has a number of turns and bends and meanders its way through the scheme. The footpaths are close to the carriage way in areas and move in and out parallel to the main road with areas of trees planted close to the carriageway to further enhance the sense of enclosure to encourage the reduction of vehicular speed organically.

The road width has been set at 5.5m in line with the DMURS document and internal radii of junctions at side roads is 3m, reducing the speed and reducing crossing distances for pedestrians.

3 No. raised speed ramp are proposed at the location indicated on the attached drawings to further reduce the speed when circulating throughout the proposed development. Tactile paving has been introduced at pedestrian crossing points and it is considered that there is a clear demarcation of pedestrian and vehicular priorities.

In terms of parking it can be noted that the all the parking is in dedicated parking areas.

It is considered that that the scheme as proposed is a pedestrian friendly layout which adopts the principles of DMURS.

APPENDIX I Allowable Surface Water Discharge Calculation

Artur Winnicki

Carpark

17.178 Railway Street

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the basis for setting consents for the drainage of surface water runoff from sites.

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

Calculated by:

Site name:

be

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	53.03659° N
Longitude:	7.30023° W
Reference:	25318465
Date:	Mar 11 2020 11:43

Runoff estimation app	roacn	IH124		
Site characteristics				Notes
Total site area (ha):		0.5884		(1) Is Q _{BAR} < 2.0 I/s/ha?
Methodology				
Q _{BAR} estimation method:	Calculate fro	m SPR and	SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate fro	m SOIL typ	e	
Soil characteristics		Default	Edited	
SOIL type:		2	2	(2) Are flow rates < 5.0 l/s?
HOST class:		N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is
SPR/SPRHOST:		0.3	0.3	usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where
Hydrological characte	ristics	Default	Edited	the blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):		1060	1060	(3) IC SED/SEDELOST < 0.32
Hydrological region:		13	13	
Growth curve factor 1 year:		0.85	0.85	Where groundwater levels are low enough the use of soakaways
Growth curve factor 30 year	S:	1.65	1.65	to avoid discharge offsite would normally be preferred for disposal of surface water runoff.
Growth curve factor 100 year	ars:	1.95	1.95	
Growth curve factor 200 yea	ars:	2.15	2.15	

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	1.74	1.74
1 in 1 year (l/s):	1.48	1.48
1 in 30 years (l/s):	2.88	2.88
1 in 100 year (l/s):	3.4	3.4
1 in 200 years (l/s):	3.75	3.75

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Jason I	Redmond &	Associate	s Consul	ting Engi	neers			Pa	ge 1			
31 Jess	31 Jessop Street Railway St Portlaoise								1 .			
Portlao	rtlaoise						Lil GLO					
Date 13	3 March 202	20 14:34)esianed	Bv AW				TOS	บปีกอะ		R
File 17.	.168_carpar	k.sws	C	hecked E	By				250		<u> </u>	~
Micro D	Drainage		S	System1 V	V.11.3							
STORM SEWER DESIGN by the Modified Rational Method												
				<u>Gl</u>	obal Varia	<u>ibles</u>						
Pipe Manh	e Size Fil nole Size	le File	C:\Prog C:\Prog	gram Fi gram Fi	les\Mic: les\Mic:	ro D. ro D.	raina raina	age Ltd age Ltd	\WinDes \WinDes	s\STAND s\STAND	ARD.PIF ARD.MHS	5
			Loca	ation -	Scotla	nd &	Irel	and				
		Retur	n Perio	od (yea:	rs)			1	100			
		Ratio	(11011) R					1	0.283			
		Maxim	um Rair	nfall (1	mm/hr)				50			
		Foul O'flo	Sewage w Sett:	(1/s/h ing (*F	a) oul onl'	(Z)			0.00			
		Volum	etric H	Runoff	Coeff.	<u>y</u> /			0.75			
		Add F	low / (Climate	Change	(응) ~~)			10			
		Maxim	um Back	kdrop He	eight (1 eight (1) m)			1.500			
		Min C	over De	epth for	r Optim	isat	ion	(m)	1.200			
		Min V Min S	lope for	Auto De Auto De	esign O misatio	n⊥y n (1	(m/s) :X)		1.00			
		Minim	um Outi	Eall In	vert (m)	• 11)		0.000			
		Groun	d Level	l at Ou	tfall (1	m)			0.000			
		Outfa	ll Mani	nole Dia	a/Lengti	h (m	m)		0			
		Outfa	ll Manł	nole Wi	dth (mm)			0			
			Des	signed	with Le [.]	vel	Inver	rts				
				Netwo	ork Desig	n Tab	<u>ole</u>					
	DN I	Length	Fall	Slope	Area	т.	Ε.	DWF	k	HYD	DIA	
		(m)	(m)	(1:X)	(ha)	(mi	ns)	(1/s)	(mm)	SECT	(mm)	
	5.000 5.001	69.87 15.86	1.542	45.3 149.6	0.102	2	2.00	0.0	0.600	0	150 225	
	6.000	38.75	0.258	150.2	0.027	2	2.00	0.0	0.600	0	150	
				Netwo	ork Result	<u>s Tak</u>	<u>ole</u>					
PN	Rain (mm/hr)	T.C. (mins)	US/11 (m)	L E.Ar (ha	:ea E.E 1) (1/	WF s)	Foul (1/s	L Add) (1	Flow /s)	Vel (m/s)	CAP (l/s)	Flow (1/s)
5.000 5.001	50.0 50.0	2.8 3.0	92.80 91.25	00 0.1 58 0.1	102 135	0.0 0.0	0. 0.	. 0 . 0	1.4 1.8	1.50 1.07	26.5 42.4	15.2 20.1
6.000	50.0	2.8	91.94	12 0.0	027	0.0	0.	. 0	0.4	0.82	14.4	4.0

©1982-2008 Micro Drainage

Jason Redmond & Associates Consulting E 31 Jessop Street Railway Portlaoise Co Laois Ireland Date 13 March 2020 14:34 Design File 17.168_carpark.sws Checked Micro Drainage System				Ig Engineers Page 2 ilway St Portlaoise Image: Constraint of the second					
PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (1/s)	k (mm)	HYD SECT	DIA (mm)
5.002	22.03	0.147	149.9	0.034	0.00	0.0	0.600	0	225
7.000	25.39	0.169	150.2	0.017	2.00	0.0	0.600	0	150
8.000	25.08	0.167	150.2	0.021	2.00	0.0	0.600	0	150
9.000	12.14	0.081	149.9	0.032	2.00	0.0	0.600	0	150
8.001	16.43	0.110	149.4	0.000	0.00	0.0	0.600	0	150
7.001	21.10	0.141	149.6	0.000	0.00	0.0	0.600	0	150
5.003 5.004	12.00 3.00	0.080 0.020	150.0 150.0	0.000	0.00 0.00	0.0	0.600 0.600	0	225 225
Network Results Table									
PN Rain (mm/hr	T.C.) (mins)	US/I (m)	L E.Ar (ha	rea E.D .) (1/	WF Fou s) (1/s	1 Add	Flow /s)	Vel (m/s)	CAP F (1/s) (]

	()	(1113)	()	(iia)	(1/3)	(1/3)	(1/3)	(, 5)	(1/3)	(1/3)
5.002	50.0	3.4	90.504	0.196	0.0	0.0	2.7	1.07	42.4	29.2
7.000	50.0	2.5	90.979	0.017	0.0	0.0	0.2	0.82	14.4	2.5
8.000	50.0	2.5	90.850	0.021	0.0	0.0	0.3	0.82	14.4	3.1
9.000	50.0	2.2	90.200	0.032	0.0	0.0	0.4	0.82	14.5	4.8
8.001	50.0	2.8	90.119	0.053	0.0	0.0	0.7	0.82	14.5	7.9
7.001	50.0	3.3	90.009	0.070	0.0	0.0	0.9	0.82	14.5	10.4
5.003 5.004	50.0 50.0	3.6 3.6	89.868 89.788	0.266 0.266	0.0	0.0	3.6 3.6	1.07 1.07	42.4 42.4	39.6 39.6

Jason Redmond & Associates Con	Page 3	
31 Jessop Street	Railway St Portlaoise	
Portlaoise	-	
Co Laois Ireland		
Date 13 March 2020 14:34	Designed By AW	
File 17.168_carpark.sws	Checked By	
Micro Drainage	System1 W.11.3	

PIPELINE SCHEDULES

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH No.	C.Level (m)	I.Level (m)	C.Depth (m)	MH DIAM., L*W (mm)
5.000 5.001	0	150 225	1 12	93.830 92.240	92.800 91.258	0.880 0.757	1050 1050
6.000	0	150	12	92.630	91.942	0.538	1050
5.002	0	225	12	92.120	90.504	1.391	1050
7.000	0	150	12	92.240	90.979	1.111	1050
8.000	0	150	12	91.920	90.850	0.920	1050
9.000	0	150	12	91.260	90.200	0.910	1050
8.001	0	150	12	91.490	90.119	1.221	1050
7.001	0	150	12	92.240	90.009	2.081	1200
5.003 5.004	0	225 225	12 12	91.340 91.140	89.868 89.788	1.247 1.127	1050 1050

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH No.	C.Level (m)	I.Level (m)	C.Depth (m)	MH DIAM., L*W (mm)
5.000 5.001	69.87 15.86	45.3 149.6	12 12	92.240 92.120	91.258 91.152	0.832 0.743	1050 1050
6.000	38.75	150.2	12	92.120	91.684	0.286	1050
5.002	22.03	149.9	12	91.340	90.357	0.758	1050
7.000	25.39	150.2	12	92.240	90.810	1.280	1200
8.000	25.08	150.2	12	91.490	90.683	0.657	1050
9.000	12.14	149.9	12	91.490	90.119	1.221	1050
8.001	16.43	149.4	12	92.240	90.009	2.081	1200
7.001	21.10	149.6	12	91.340	89.868	1.322	1050
5.003 5.004	12.00 3.00	150.0 150.0	12	91.140 0.000	89.788 89.768	1.127 -89.993	1050 <mark>0</mark>

Jason Redmond & Assoc	ciates Consulting Engineers	Page 4			
31 Jessop Street	Railway St Portlac	pise			
Portlaoise					
Co Laois Ireland					
Date 13 March 2020 14:3	34 Designed By AW		allasor		
File 17.168_carpark.sws	Checked By				
Micro Drainage	System1 W.11.3				
	PIPELINE SC	HEDULES			
	Upstream N	<u>Manhole</u>			
Hyd I	Diam C.Level	I.Level C.Depth M	H DIAM., L*W		
PN Sect	(mm) MH NO. (m)	(m) (m)	(mm)		
	Downstream	Manhole			
PN Length (m)	Slope MH No. C.Leve (1:X) (m)	l I.Level C.Depth (m) (m)	MH DIAM., L*W (mm)		

Jason Redmond & Associates Cor	Page 5	
31 Jessop Street	Railway St Portlaoise	
Portlaoise		
Co Laois Ireland		
Date 13 March 2020 14:34	Designed By AW	DETERRO
File 17.168_carpark.sws	Checked By	
Micro Drainage	System1 W.11.3	

MANHOLE SCHEDULES

M/H Nur	lole nber	Cover Level (m)	M/Hole Depth (m)	M/Hole Diam.,L*W (mm)	PN	Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
	1	93.830	1.030	1050	5.000	92.800	150			
	12	92.240	0.982	1050	5.001	91.258	225	5.000	91.258	150
	12	92.630	0.688	1050	6.000	91.942	150			
	12	92.120	1.616	1050	5.002	90.504	225	5.001 6.000	91.152 91.684	225 150
	12	92.240	1.261	1050	7.000	90.979	150			
	12	91.920	1.070	1050	8.000	90.850	150			
	12	91.260	1.060	1050	9.000	90.200	150			
	12	91.490	1.371	1050	8.001	90.119	150	8.000 9.000	90.683 90.119	150 150
	12	92.240	2.231	1200	7.001	90.009	150	7.000 8.001	90.810 90.009	<mark>150</mark> 150
	12	91.340	1.472	1050	5.003	89.868	225	5.002 7.001	90.357 89.868	225 150
	12	91.140	1.352	1050	5.004	89.788	225	5.003	89.788	225
		0.000	-89.768	0		OUTFALL		5.004	89.768	225

Jason Redmond & Associates Consulting Engineers		Page 1
31 Jessop Street	Railway St Portlaoise	
Portlaoise		
Co Laois Ireland		
Date 13 March 2020 14:47	Designed By AW	Definence
File 17.168_carpark.sws	Checked By	
Micro Drainage	System1 W.11.3	

Jason Redmond & Associates Consulting Engineers				Page 2	
31 Jessop Street	Railway St Portl	Railway St Portlaoise			
Portlaoise				l i lano 🗸 🛌	
Co Laois Ireland					
Date 13 March 2020 14:47	Designed By AW			DRATARON	
File 17.168_carpark.sws	Checked By				
Micro Drainage	System1 W.11.3				
MH. Name	12	12	12		

		8.001	5.002 E
Hor Scale 1000			
Ver Scale 100			
Datum (m) 87.000			
PN	 7.000	7.001	
Dia (mm)	150	150	
Slope (1:X)	150.2	149.6	
Cover Level (m)	92.240	92.240	91.340
Invert Level (m)	90.979 810	6000.06 868 868	
Length (m)	25.39	21.10	

Jason Redmond & Associates Consulting Engir	neers	Page 3
31 Jessop Street	Railway St Portlaoise	
Portlaoise		പ്പ് പ്രോസം 🗠
Co Laois Ireland	Designed By MM	
File 17 168 carpark sws	Checked By AW	L'ELE CA
Micro Drainage	System1 W.11.3	
	•	
MH Name	12 12	
	8,000	
	0	
Hor Scale 1000		
Ver Scale 100		
Datum (m) 87.000		
PN	9.000	
Dia (mm)	150	
Slope (1:X)	149.9	
	0	
Cover Level (m)	97. 7 .	
	<u> </u>	
	0 n	
Invert Level (m)	11 20	
	0) 0)	
Length (m)	12.14	
· · · · ·		

Calculated by:

Site name:

Site location:

Greenfield runoff rate estimation for sites

53.03720° N

7.29935° W

3467657239

Mar 11 2020 11:56

www.uksuds.com | Greenfield runoff tool

Artur Winnicki Site Details 17.178 Railway Street Latitude: Estate Longitude:

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may Date: be

the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach

IH124

1.4219

Site characteristics

Total site area (ha):

Notes

2.0 l/s/ha.

(1) Is Q_{BAR} < 2.0 I/s/ha?

Reference:

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

Soil characteristics

	Default	Edited	
SOIL type:	2	2	J
HOST class:	N/A	N/A	J
SPR/SPRHOST:	0.3	0.3	

Hydrological characteristics

	Default	Edited
SAAR (mm):	1060	1060
Hydrological region:	13	13
Growth curve factor 1 year:	0.85	0.85
Growth curve factor 30 years:	1.65	1.65
Growth curve factor 100 years:	1.95	1.95
Growth curve factor 200 years:	2.15	2.15

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	4.21	4.21
1 in 1 year (l/s):	3.58	3.58
1 in 30 years (l/s):	6.95	6.95
1 in 100 year (l/s):	8.21	8.21
1 in 200 years (l/s):	9.05	9.05

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Jason Redm	ond & Associa	tes Consu	Iting Engir	neers			Pa	ge 1			
31 Jessop S Portlaoise	treet	Railway Street Portlaoise						<u>í</u> fe	FO	L.	~
Date 13 Mar File 17.168	ch 2020 14:53 estate.SWS] (Designed I Checked B	By AW		Drainage					
Micro Draina	ge	ç	System1 V	V.11.3							
	STC	RM SEW	ER DESIG	N by the	Modi	fied Ra	ational N	lethod			
			<u>Glo</u>	bal Varia	<u>ıbles</u>						
Pipe Size FileC:\Program Files\Micro Drainage Ltd\WinDes\STANDARD.PIPManhole Size FileC:\Program Files\Micro Drainage Ltd\WinDes\STANDARD.MHS											
		Loc	ation –	Scotla	nd &	Irel	and				
	Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr)							100 5.500 0.283 50			
	Fou O'f Volu	L Sewage Low Sett umetric	(l/s/ha ing (*Fo Runoff (a) Dul only Coeff.	y)			0.00 0 0.75			
Add Flow / Climate Change (%)10Minimum Backdrop Height (m)0.200Maximum Backdrop Height (m)1.500Min Course Double for Optimization (m)1.200											
	Min Min Min: Grou	Vel for Slope f imum Out ind Leve	Auto De or Optim fall Inv l at Out	esign O: nisatio: vert (m tfall (1	nly n (1) m)	(m/s) :X)		1.00 500 0.000 0.000			
	Out: Out: Out:	all Man all Man all Man	hole Nam hole Dia hole Wic	ne a/Lengt] lth (mm	h (m)	m)		0 0			
		De	signed w	with Le	vel	Inver	ts				
Network Design Table											
PI	N Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T. (mi	E. ns)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)	
1.0)00 25.05)01 61.93	0.167 0.620	150.0 99.9	0.014 0.191	2	2.00	0.0	0.600 0.600	0	<mark>150</mark> 225	
2.0	36.48	0.243	150.1	0.095	2	2.00	0.0	0.600	0	150	
			Netwo	ork Result	s Tal	<u>ole</u>					
PN Ra (mm,	in T.C. /hr) (mins	US/I) (m)	L E.Ar (ha	ea E.D) (1/	WF s)	Foul (l/s)	Add (1	Flow /s)	Vel (m/s)	CAP (1/s)	Flow (l/s)
1.000	50.0 2. 50.0 3.	5 90.0 3 89.8	50 0.0 30 0.2)14 205	0.0 0.0	0. 0.	0 0	0.2 2.8	0.82 1.31	14.5 52.0	2.
2.000	50.0 2.	.7 89.6	03 0.0)95	0.0	0.	0	1.3	0.82	14.5	14.

©1982-2008 Micro Drainage

Jason Redmond & Associates Con	Page 2	
31 Jessop Street	Railway Street	
Portlaoise	Portlaoise	
Co Laois Ireland		
Date 13 March 2020 14:53	Designed By AW	
File 17.168_estate.SWS	Checked By	
Micro Drainage	System1 W.11.3	

Network Design Table

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	T.E. (mins)	DWF (l/s)	k (mm)	HYD SECT	DIA (mm)
2.001	7.23	0.150	48.2	0.045	0.00	0.0	0.600	0	150
1.002 1.003	33.47 8.73	0.223 0.058	150.1 150.5	0.091 0.000	0.00	0.0	0.600 0.600	0	300 300
3.000	32.25	0.215	150.0	0.100	2.00	0.0	0.600	0	225
4.000	27.29	0.182	149.9	0.032	2.00	0.0	0.600	0	225
3.001 3.002 3.003	12.65 35.71 12.34	0.084 0.238 0.082	150.6 150.0 150.5	0.108 0.131 0.023	0.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600	0 0 0	225 300 300
1.004	2.65	0.018	147.2	0.000	0.00	0.0	0.600	0	375

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	E.Area (ha)	E.DWF (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	CAP (l/s)	Flow (l/s)
2.001	50.0	2.8	89.360	0.140	0.0	0.0	1.9	1.45	25.7	20.9
1.002 1.003	50.0 50.0	3.7 3.8	89.210 88.987	0.436 0.436	0.0	0.0	5.9 5.9	1.28 1.28	90.6 90.4	64.9 64.9
3.000	50.0	2.5	89.150	0.100	0.0	0.0	1.4	1.07	42.4	14.9
4.000	50.0	2.4	88.653	0.032	0.0	0.0	0.4	1.07	42.4	4.8
3.001 3.002 3.003	50.0 50.0 50.0	2.7 3.2 3.3	88.471 88.387 88.149	0.240 0.371 0.394	0.0 0.0 0.0	0.0 0.0 0.0	3.2 5.0 5.3	1.06 1.28 1.28	42.3 90.6 90.4	35.7 55.3 58.7
1.004	50.0	3.9	88.067	0.830	0.0	0.0	11.2	1.49	164.7	123.6

Jason Redmond & Associates Con	Page 3	
31 Jessop Street	Railway Street	
Portlaoise	Portlaoise	
Co Laois Ireland		
Date 13 March 2020 14:53	Designed By AW	
File 17.168_estate.SWS	Checked By	
Micro Drainage	System1 W.11.3	

PIPELINE SCHEDULES

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH No.	C.Level (m)	I.Level (m)	C.Depth (m)	MH DIAM., L*W (mm)
1.000	0	<mark>150</mark>	1	90.950	90.050	0.750	1050
1.001		225	2	90.830	89.830	0.775	1050
2.000	0	150	3	90.590	<mark>89.603</mark>	0.837	1050
2.001		150	4	90.520	89.360	1.010	1050
1.002	0	300	5	90.220	<mark>89.210</mark>	0.710	1050
1.003		300	6	89.930	88.987	0.643	1050
3.000	0	225	7	90.630	89.150	1.255	1050
4.000	0	225	8	89.630	88.653	0.752	1050
3.001	0	225	9	89.950	88.471	1.254	1050
3.002	0	300	10	89.770	88.387	1.083	1050
3.003	0	300	11	89.790	88.149	1.341	1050
1.004	0	375	12	90.480	88.067	2.038	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH No.	C.Level (m)	I.Level (m)	C.Depth (m)	MH DIAM., L*W (mm)	I
1.000	25.05	150.0	2	90.830	89.883	0.797	1050	0
1.001	61.93	99.9	5	90.220	89.210	0.785	1050	0
2.000	36.48	150.1	4	90.520	89.360	1.010	1050	0
2.001	7.23	48.2	5	90.220	89.210	0.860	1050	0
1.002	33.47	150.1	6	89.930	88.987	0.643	1050	С
1.003	8.73	150.5	12	90.480	88.929	1.251	1350	С
3.000	32.25	150.0	9	89.950	88.935	0.790	1050	С
4.000	27.29	149.9	9	89.950	88.471	1.254	1050	С
3.001	12.65	150.6	10	89.770	88.387	1.158	1050	0
3.002	35.71	150.0	11	89.790	88.149	1.341	1050	0
3.003	12.34	150.5	12	90.480	88.067	2.113	1350	0
1.004	2.65	147.2		0.000	88.049	-88.424	(С

Jason Redmond & Associates C	Page 4	
31 Jessop Street Portlaoise	Railway Street Portlaoise	Maro
Date 13 March 2020 14:53 File 17.168 estate.SWS	Designed By AW Checked By	Drainage.
Micro Drainage	System1 W.11.3	

MANHOLE SCHEDULES

M/H Num	ole ber	Cover Level (m)	M/Hole Depth (m)	M/Hole Diam.,L*W (mm)	PN	Pipes Out IL.(m)	D (mm)	PN	Pipes In IL.(m)	D (mm)
	1	90.950	0.900	1050	1.000	90.050	150				
	2	90.830	1.000	1050	1.001	89.830	225	1.000	89.883		150
	3	90.590	0.987	1050	2.000	89.603	150				
	4	90.520	1.160	1050	2.001	89.360	150	2.000	89.360		150
	5	90.220	1.010	1050	1.002	89.210	300	1.001 2.001	89.210 89.210		225 150
	6	89.930	0.943	1050	1.003	88.987	300	1.002	88.987		300
	7	90.630	1.480	1050	3.000	89.150	225				
	8	89.630	0.977	1050	4.000	88.653	225				
	9	89.950	1.479	1050	3.001	88.471	225	3.000 4.000	88.935 88.471		225 <mark>225</mark>
	10	89.770	1.383	1050	3.002	88.387	300	3.001	88.387		225
	11	89.790	1.641	1050	3.003	88.149	300	3.002	88.149		300
	12	90.480	2.413	1350	1.004	88.067	375	1.003 3.003	88.929 88.067		300 300
		0.000	-88.049	0		OUTFALL		1.004	88.049		375

Jason Redmond & Associates Consulting Engineers		Page 1
31 Jessop Street	Railway Street	
Portlaoise	Portlaoise	
Co Laois Ireland		
Date 13 March 2020 14:53	Designed By AW	Definence
File 17.168_estate.SWS	Checked By	
Micro Drainage	System1 W.11.3	

Jason Redmond & Associates Consulting Engineers		Page 2
31 Jessop Street	Railway Street	
Portlaoise	Portlaoise	
Co Laois Ireland		
Date 13 March 2020 14:53	Designed By AW	Dentración
File 17.168_estate.SWS	Checked By	<u>Calenderse</u>
Micro Drainage	System1 W.11.3	•

Jason Redmond & Associates Consulting Engineers			Page 3				
31 Jessop Street	Railway Street	Railway Street					
Portlaoise	Portlaoise						
Co Laois Ireland							
Date 13 March 2020 14:53	Designed By AW	Designed By AW					
File 17.168 estate.SWS	Checked By						
Micro Drainage	System1 W.11.3						
MH Name	8	9					
Pill Nalie	0	<u>_</u>					

Hor Scale 1000 Ver Scale 100

Datum (m) 85.000 PN Dia (mm) Slope (1:X)

Cover Level (m)

Invert Level (m)

Length (m)

3.000

89.950

88.471

4.000 225 149.9

27.29

88.653 89.630

APPENDIX II

Attenuation Tank Calculations for 100 Year Return Period

Microstrain	Ltd								Page 1	
Unit B3				Rail	way St	Portlac	ise Car	park		
Metropoint	Business 1	Park		100Y	RP+10%				4	
Swords Co.	Dublin			3.41	/s				Misco	m
Date 12MAR2	0			Desi	gned by	y STORMI	ECH S74	0		
File				Chec	ked by	LP			Uraina	ge
XP Solution	s			Sour	ce Cont	trol 201	5.1			
						0101 101				
	Summary o	of Resu	ults	for 10	0 vear	Return	Period	(+10%)	1	
									_	
		Н	alf Dr	cain Tir	ne : 324					
	Storm	Maw	Max	Ma	v	Mav	Status			
	Event	Level	Depth	Infilt	ration (Control E	Outflow	Volume	Status	
		(m)	(m)	(1/	/s)	(1/s)	(1/s)	(m ³)		
15	min Winter	0.489	0.489		0.0	2.3	2.3	50.5	OK	
30	min Winter	0.00U 0.819	0.000		0.0	2.0	2.6 2 a	00.1 84 5	OK	
120	min Winter	0.019	0.019		0.0	イ・ジ ス 1	2.9	99.2	OK	
1.20	min Winter	1,024	1.024		0.0	J.⊥ २ २	3.⊥ २.२	105 6	0 K	
210	min Winter	1.052	1.052		0.0	 २ २).2 २ २	108 6	0 K	
360	min Winter	1.062	1,062		0.0	ی. ۲ ۲	د.د ۲ ۲	109.0	0 K	
480	min Winter	1,060	1.060		0.0	3.3	3.5 3 3	109 4	O K	
600	min Winter	1.047	1.047		0.0	3.3	3.3	108.1	0 K	
720	min Winter	1.028	1.028		0.0	3.3	3.3	106.1	0 K	
960	min Winter	0.980	0.980		0.0	3.2	3.2	101.1	0 K	
1440	min Winter	0.876	0.876		0.0	3.0	3.0	90.4	0 K	
2160	min Winter	0.730	0.730		0.0	2.7	2.7	75.4	ОК	
2880	min Winter	0.601	0.601		0.0	2.5	2.5	62.0	ОК	
4320	min Winter	0.358	0.358		0.0	2.3	2.3	36.9	ΟK	
5760	min Winter	0.150	0.150		0.0	2.3	2.3	15.4	ΟK	
7200	min Winter	0.107	0.107		0.0	2.1	2.1	11.0	O K	
8640	min Winter	0.091	0.091		0.0	1.8	1.8	9.4	O K	
10080	min Winter	0.082	0.082		0.0	1.6	1.6	8.4	O K	
		Storm		Rain	Flooded	Discharg	e Time-P	eak		
		Event	(mm/hr)	Volume	Volume	(mins	5)		
					(m³)	(m³)				
	15	min Wi	nter	81.664	0.0	52	8	25		
	30	min Wi	nter	55.684	0.0	72.	0	39		
	60	min Wi	nter	35.659	0.0	92.	5	68		
	120	min Wi	nter	22.224	0.0	115.	3	122		
	180	min Wi	nter	16.713	0.0	130.	0	178		
	240	min Wi	nter	13.628	0.0	141.	4	234		
	360	min Wi	nter	10.193	0.0	158.	6	306		
	480	min Wi	nter	8.284	0.0	171.	9	376		
	600	min Wi	nter	7.049	0.0	182.	8	454		
	720	min Wi	nter	6.176	0.0	192.	2	530		
	960	min Wi	nter	5.011	0.0	208.	0	684		
	1440	min Wi	nter	3.730	0.0	232.	2	976		
	2160	min Wi	nter	2.777	0.0	259.	4 1	404		
	2880	min Wi	nter	2.250	0.0	280.	з 1 °	820		
	4320	min Wi	nter	1.671	0.0	312.	2 2	632		
	5760	min Wi	nter	1.352	0.0	336.	y 3	112		
	7200	min Win	nter	1.147	0.0	357.	2 3	68U		
	8640	min Wii	nter	1.002	0.0	374.	ь 4 а г	4U8 136		
	10080	11111 W11	uret.	0.094	0.0	389.	9 5	υCı		
			0100	0015						
1			©1985	2-2015	XP Sol	utions				

Microstrain Ltd		Page 2
Unit B3	Railway St Portlaoise Carpark	
Metropoint Business Park	100YRP+10%	4
Swords Co. Dublin	3.41/s	Micco
Date 12MAR20	Designed by STORMTECH S740	
File	Checked by LP	Diamage
XP Solutions	Source Control 2015.1	L.

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Ye	es
Return Period (years)	100	Cv (Summer) 0.75	50
Region	Scotland and Ireland	Cv (Winter) 0.84	40
M5-60 (mm)	16.500	Shortest Storm (mins) 1	15
Ratio R	0.300	Longest Storm (mins) 1008	30
Summer Storms	No	Climate Change % +1	10

<u>Time Area Diagram</u>

Total Area (ha) 0.309

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.103	4	8	0.103	8	12	0.103

Microstrain Ltd		Page 3
Unit B3	Railway St Portlaoise Carpark	
Metropoint Business Park	100YRP+10%	<u> </u>
Swords Co. Dublin	3.41/s	Micco
Date 12MAR20	Designed by STORMTECH S740	
File	Checked by LP	Diamaye
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 2.000

Cellular Storage Structure

Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	172.0	172.0	1.200	0.0	231.8
1.100	172.0	231.8			

Hydro-Brake® Outflow Control

Design Head (m) 1.100 Hydro-Brake® Type Md6 SW Only Invert Level (m) 0.000 Design Flow (l/s) 3.4 Diameter (mm) 75

Depth (m) F	low (l/s)	Depth (m)	Flow $(1/s)$	Depth (m) Flo	ow (l/s)	Depth (m)	Flow (l/s)
0.100	2.0	1.200	3.5	3.000	5.6	7.000	8.5
0.200	2.3	1.400	3.8	3.500	6.0	7.500	8.8
0.300	2.1	1.600	4.1	4.000	6.4	8.000	9.1
0.400	2.2	1.800	4.3	4.500	6.8	8.500	9.4
0.500	2.3	2.000	4.5	5.000	7.2	9.000	9.6
0.600	2.5	2.200	4.8	5.500	7.5	9.500	9.9
0.800	2.9	2.400	5.0	6.000	7.9		
1.000	3.2	2.600	5.2	6.500	8.2		

Microstrain	Ltd								Page 1
Unit B3				Rail	way St	Portlao	ise Est	ate	
Metropoint	Business :	Park		100Y	RP+10%				4
Swords Co.	Dublin			8.21	/s				- Cu
Date 12MAR2	0			Desi	aned h	V STORMT	ECH 974	0	– Micro
	0			Char	und by	y SIONHI.		0	Drainage
File				Cnec	кеа ру	ШΡ			
XP Solution	S			Sour	ce Con	trol 201	5.1		
	Summary o	of Resu	ults f	for 10	<u>0 year</u>	Return	Period	(+10%))
		Н	alf Dra	ain Tir	ne : 301	minutes.			
	Storm	Maw	May	M		May	Мак	Max	Status
	Event	Level	Denth	Tnfil+	ration (Control S	Outflow	Volume	Status
	Lvenc	(m)	(m)	(1)	(s)	(1/s)	(1/s)	(m ³)	
		()	(/	(=)	-,	(=/ 0/	(=/ 0/	()	
15	min Winter	0.496	0.496		0.0	6.9	6.9	118.8	O K
30	min Winter	0.670	0.670		0.0	6.9	6.9	160.4	O K
60	min Winter	0.832	0.832		0.0	7.1	7.1	199.2	O K
120	min Winter	0.975	0.975		0.0	7.6	7.6	233.4	ОК
180	min Winter	1.035	1.035		0.0	7.8	7.8	247.8	OK
240	min Winter	1.061	1.061		0.0	1.9	7.9	254.1	O K
360	min Winter	1.06/	1.061		0.0	×.U	8.0	255.5	U K
480	min Winter	1.042	1.001 1.042		0.0	1.9	1.9	210 0	U K
720	min Winter	1 010	1 010		0.0	7.9	7.9	249.0	OK
720	min Winter	1.019	1.019		0.0	7.0	7.0	243.9	OK
1440	min Winter	0.900	0.900		0.0	7.0	7.0	199 6	O K
2160	min Winter	0.645	0.645		0.0	6.9	6.9	154.4	0 K
2880	min Winter	0.451	0.451		0.0	6.9	6.9	107.9	0 K
4320	min Winter	0.204	0.204		0.0	6.8	6.8	48.8	ΟK
5760	min Winter	0.151	0.151		0.0	5.7	5.7	36.1	ОК
7200	min Winter	0.128	0.128		0.0	4.9	4.9	30.6	O K
8640	min Winter	0.114	0.114		0.0	4.3	4.3	27.2	O K
10080	min Winter	0.104	0.104		0.0	3.9	3.9	24.8	O K
		Storm		Rain	Flooded	Discharge	e Time-P	eak	
		Event	(1	nm/hr)	Volume	Volume	(mins	;)	
					(m ³)	(m ³)			
	15	min Wi	nter 8	31.664	0.0	124.	7	25	
	30	min Wi	nter S	55.684	0.0	170.	2	39	
	60	min Wi	nter 3	35.659	0.0	218.	9	66	
	120	min Wi	nter 2	22.224	0.0	272.	9	122	
	180	min Wi	nter 1	L6.713	0.0	307.	9	178	
	240	min Wi	nter 1	L3.628	0.0	334.	8	234	
	360	min Wi	nter 1	L0.193	0.0	375.	6	302	
	480	min Wi	nter	8.284	0.0	407.	U	374	
	600	min Wi	nter	7.049	0.0	432.	9	452	
	720	min Wii	nter	6.176	0.0	455.	∠	53U 600	
	960	min Wil	nter	3.UII	0.0	492.	4	002 079	
	1440 2160	min W11	nter	2.130	0.0	549. 617	, Д 1	210 404	
	2200	min Wi	nter	2.250	0.0	664	- 1 0 1	788	
	4320	min Wi	nter	1.671	0.0	739	4 2	336	
	5760	min Wi	nter	1.352	0.0	798.	2 2	992	
	7200	min Wi	nter	1.147	0.0	846.	2 3	680	
	8640	min Wi	nter	1.002	0.0	887.	4 4	408	
	10080	min Wi	nter	0.894	0.0	923.	5 5	144	
			01020	-2015	XP SAT	lutione			
1			シェノロム	こしてつ	77T 001				

Microstrain Ltd		Page 2
Unit B3	Railway St Portlaoise Estate	
Metropoint Business Park	100YRP+10%	<u> </u>
Swords Co. Dublin	8.21/s	Micco
Date 12MAR20	Designed by STORMTECH S740	
File	Checked by LP	Dialidye
XP Solutions	Source Control 2015.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	16.500	Shortest Storm (mins) 15
Ratio R	0.300	Longest Storm (mins) 10080
Summer Storms	No	Climate Change % +10

<u>Time Area Diagram</u>

Total Area (ha) 0.732

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.244	4	8	0.244	8	12	0.244

Microstrain Ltd		Page 3
Unit B3	Railway St Portlaoise Estate	
Metropoint Business Park	100YRP+10%	<u> </u>
Swords Co. Dublin	8.21/s	Micco
Date 12MAR20	Designed by STORMTECH S740	
File	Checked by LP	Diamaye
XP Solutions	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 2.000

Cellular Storage Structure

Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	399.0	399.0	1.200	0.0	490.5
1.100	399.0	490.5			

Hydro-Brake® Outflow Control

Design Head (m) 1.100 Hydro-Brake® Type Md6 SW Only Invert Level (m) 0.000 Design Flow (l/s) 8.2 Diameter (mm) 116

Depth (m) Flow	(l/s)	Depth (m) Fl	low (l/s)	Depth (m) Flow	(l/s)	Depth (m) Fl	.ow (1/s)
0.100	3.7	1.200	8.4	3.000	13.3	7.000	20.3
0.200	6.7	1.400	9.1	3.500	14.4	7.500	21.0
0.300	6.9	1.600	9.7	4.000	15.4	8.000	21.7
0.400	6.5	1.800	10.3	4.500	16.3	8.500	22.4
0.500	6.3	2.000	10.9	5.000	17.2	9.000	23.0
0.600	6.4	2.200	11.4	5.500	18.0	9.500	23.7
0.800	7.0	2.400	11.9	6.000	18.8		
1.000	7.7	2.600	12.4	6.500	19.6		

APPENDIX III

'Portlaoise Fluvial Flood Extent Map' by OPW

